1303.2005 (Drew Keppel)
Drew Keppel
Gravitational-wave searches for signals from inspiralling compact binaries have relied on matched filtering banks of waveforms (called template banks) to try to extract the signal waveforms from the detector data. These template banks have been constructed using four main considerations, the region of parameter space of interest, the sensitivity of the detector, the matched filtering bandwidth, and the sensitivity one is willing to lose due to the granularity of template placement, the latter of which is governed by the minimal match. In this work we describe how the choice of the lower frequency cutoff, the lower end of the matched filter frequency band, can be optimized for detection. We also show how the minimal match can be optimally chosen in the case of limited computational resources. These techniques are applied to searches for binary neutron star signals that have been previously performed when analyzing Initial LIGO and Virgo data and will be performed analyzing Advanced LIGO and Advanced Virgo data using the expected detector sensitivity. By following the algorithms put forward here, the volume sensitivity of these searches is predicted to improve without increasing the computational cost of performing the search.
View original:
http://arxiv.org/abs/1303.2005
No comments:
Post a Comment