1303.0433 (Stan Gudder)
Stan Gudder
This paper is based on the causal set approach to discrete quantum gravity. We first describe a classical sequential growth process (CSGP) in which the universe grows one element at a time in discrete steps. At each step the process has the form of a causal set (causet) and the "completed" universe is given by a path through a discretely growing chain of causets. We then quantize the CSGP by forming a Hilbert space $H$ on the set of paths. The quantum dynamics is governed by a sequence of positive operators $\rho_n$ on $H$ that satisfy normalization and consistency conditions. The pair $(H,\brac{\rho_n})$ is called a quantum sequential growth process (QSGP). We next discuss a concrete realization of a QSGP in terms of a natural quantum action. This gives an amplitude process related to the sum over histories" approach to quantum mechanics. Finally, we briefly discuss a discrete form of Einstein's field equation and speculate how this may be employed to compare the present framework with classical general relativity theory.
View original:
http://arxiv.org/abs/1303.0433
No comments:
Post a Comment