Friday, February 22, 2013

1302.5321 (PoNing Chen et al.)

Minimizing properties of critical points of quasi-local energy    [PDF]

PoNing Chen, Mu-Tao Wang, Shing-Tung Yau
In relativity, the energy of a moving particle depends on the observer, and the rest mass is the minimal energy seen among all observers. The Wang-Yau quasi-local mass for a surface in spacetime introduced in [7] and [8] is defined by minimizing quasi-local energy associated with admissible isometric embeddings of the surface into the Minkowski space. A critical point of the quasi-local energy is an isometric embedding satisfying the Euler-Lagrange equation. In this article, we prove results regarding both local and global minimizing properties of critical points of the Wang-Yau quasi-local energy. In particular, under a condition on the mean curvature vector we show a critical point minimizes the quasi-local energy locally. The same condition also implies that the critical point is globally minimizing among all axially symmetric embedding provided the image of the associated isometric embedding lies in a totally geodesic Euclidean 3-space.
View original: http://arxiv.org/abs/1302.5321

No comments:

Post a Comment