Miguel Angel Javaloyes, Leandro Lichtenfelz, Paolo Piccione
We develop the basics of a theory of almost isometries for spaces endowed with a quasi-metric. The case of non-reversible Finsler (more specifically, Randers) metrics is of particular interest, and it is studied in more detail. The main motivation arises from General Relativity, and more specifically in spacetimes endowed with a timelike conformal field K, in which case K-conformal diffeomorphisms correspond to almost isometries of the Fermat metric defined in the spatial part. A series of results on the topology and the Lie group structure of K-conformal maps are discussed.
View original:
http://arxiv.org/abs/1205.4539
No comments:
Post a Comment