Hugues Beauchesne, Ariel Edery
Numerical studies of gravitational collapse in isotropic coordinates have
recently shown an interesting connection between the gravitational Lagrangian
and black hole thermodynamics. A study of the actual spacetime was not the main
focus of this work and in particular, the rich and interesting structure of the
interior has not been investigated in much detail and remains largely unknown.
We elucidate its features by performing a numerical study of the spacetime in
isotropic coordinates during gravitational collapse of a massless scalar field.
The most salient feature to emerge is the formation of a thin shell of matter
just inside the apparent horizon. The energy density and Ricci scalar peak at
the shell and there is a jump discontinuity in the extrinsic curvature across
the apparent horizon, the hallmark that a thin shell is present in its
vicinity. At late stages of the collapse, the spacetime consists of two vacuum
regions separated by the thin shell. The interior is described by an
interesting collapsing isotropic universe. It tends towards a vacuum (never
reaches a perfect vacuum) and there is a slight inhomogeneity in the interior
that plays a crucial role in the collapse process as the areal radius tends to
zero. The spacetime evolves towards a curvature (physical) singularity in the
interior, both a Weyl and Ricci singularity. In the exterior, our numerical
results match closely the analytical form of the Schwarzschild metric in
isotropic coordinates, providing a strong test of our numerical code.
View original:
http://arxiv.org/abs/1108.0449
No comments:
Post a Comment