Thursday, March 28, 2013

1106.4339 (Jeffrey L. Jauregui)

Fill-ins of nonnegative scalar curvature, static metrics, and
quasi-local mass
   [PDF]

Jeffrey L. Jauregui
Consider a triple of "Bartnik data" $(\Sigma, \gamma,H)$, where $\Sigma$ is a topological 2-sphere with Riemannian metric $\gamma$ and positive function $H$. We view Bartnik data as a boundary condition for the problem of finding a compact Riemannian 3-manifold $(\Omega,g)$ of nonnegative scalar curvature whose boundary is isometric to $(\Sigma,\gamma)$ with mean curvature $H$. Considering the perturbed data $(\Sigma, \gamma, \lambda H)$ for a positive real parameter $\lambda$, we find that such a "fill-in" $(\Omega,g)$ must exist for $\lambda$ small and cannot exist for $\lambda$ large; moreover, we prove there exists an intermediate threshold value. The main application is the construction of a new quasi-local mass, a concept of interest in general relativity. This mass has the nonnegativity property, but differs from many other definitions in that it tends to vanish on static vacuum (as opposed to flat) regions. We also recognize this mass as a special case of a type of twisted product of quasi-local mass functionals. Several ideas in this paper draw on work of Bray, Brendle--Marques--Neves, Corvino, Miao, and Shi--Tam.
View original: http://arxiv.org/abs/1106.4339

No comments:

Post a Comment