Thursday, December 27, 2012

1212.5862 (Shun-Jin Wang)

Microscopic quantum structure of black hole and vacuum versus quantum
statistical origin of gravity
   [PDF]

Shun-Jin Wang
The Planckon densely piled model of vacuum is proposed. Based on it, the microscopic quantum structure of Schwarzschild black hole and quantum statistical origin of its gravity are studied. It is shown that thermodynamic temperature equilibrium and mechanical acceleration balance make the space-time of the black hole horizon singular and Casimir effect works inside the horizon. This effect makes the inside vacuum have less zero fluctuation energy than the outside vacuum, and a temperature difference as well as gravity as thermal pressure are created. A dual relation between inside and outside regions of the black hole is found. By dual relation, an attractor behaviour of the horizon surface is unveiled. Outside horizon, there exist thermodynamic non-equilibrium and mechanical non-balance which lead to outward centrifugal energy flow and inward gravitation energy flow, their compensation establishes local equilibrium. The lost vacuum energy in negative gravitation potential regions has been removed to the black hole surface to form a spherical Planckon shell with the thickness of Planckon diameter. All the particles absorbed by the black hole have fallen down to the horizon and converted into spin 1/2 radiation quanta made of standing waves on the horizon sphere with the mean energy related to Hawking-Unruh temperature, thermodynamic equilibrium and mechanical balance keep them stable and be tightly bound in the horizon. The gravitation mass 2M and physical mass $M$ of the black hole are calculated. The entropy of the black hole, calculated from the microscopic state number of the many-body system of radiation fermion quanta, is well consist with Hawking. A radical modification of the temperature law is made.The accelerating expansion of the universe yields the expansion cosmon and its energy density agrees with dark energy density.
View original: http://arxiv.org/abs/1212.5862

No comments:

Post a Comment