Thursday, October 25, 2012

1210.6362 (Samaya Nissanke et al.)

Identifying Elusive Electromagnetic Counterparts to Gravitational Wave
Mergers: an end-to-end simulation
   [PDF]

Samaya Nissanke, Mansi Kasliwal, Alexandra Georgieva
Combined gravitational-wave (GW) and electromagnetic (EM) observations of compact binary mergers should enable detailed studies of astrophysical processes in the strong-field gravity regime. Networks of GW interferometers have poor angular resolution on the sky and their EM signatures are predicted to be faint. Therefore, a challenging goal will be to unambiguously pinpoint the EM counterparts to GW mergers. We perform the first comprehensive end-to-end simulation that focuses on: i) GW sky localization, distance measures and volume errors with two compact binary populations and four different GW networks, ii) subsequent detectability by a slew of multiwavelength telescopes and, iii) final identification of the merger counterpart amidst a sea of possible astrophysical false-positives. First, we find that double neutron star (NS) binary mergers can be detected out to a maximum distance of 400 Mpc (or 750 Mpc) by three (or five) detector GW networks respectively. NS -- black-hole (BH) mergers can be detected a factor of 1.5 further out. The sky localization uncertainties for NS-BH mergers are 50--170 sq. deg. (or 6--65 sq. deg.) for a three (or five detector) GW network respectively. Second, we quantify relative fractions of optical counterparts that are detectable by different size telescopes. Third, we present five case studies to illustrate the diversity of challenges in secure identification of the EM counterpart at low and high Galactic latitudes. For the first time, we demonstrate how construction of low-latency GW volumes in conjunction with local universe galaxy catalogs can help solve the problem of false positives.
View original: http://arxiv.org/abs/1210.6362

No comments:

Post a Comment