James M. Nester, Chiang-Mei Chen, Jian-Liang Liu, Gang Sun
The Hamiltonian for dynamic geometry generates the evolution of a spatial region along a vector field. It includes a boundary term which determines both the value of the Hamiltonian and the boundary conditions. The value gives the quasi-local quantities: energy-momentum, angular-momentum/center-of-mass. The boundary term depends not only on the dynamical variables but also on their reference values; the latter determine the ground state (having vanishing quasi-local quantities). For our preferred boundary term for Einstein's GR we propose 4D isometric matching and extremizing the energy to determine the reference metric and connection values.
View original:
http://arxiv.org/abs/1210.6148
No comments:
Post a Comment