Willy Fischler, Juan F. Pedraza, Walter Tangarife Garcia
Using the gauge/gravity correspondence, we study the dynamics of a heavy quark in strongly-coupled non-commutative Super-Yang-Mills at finite temperature. We propose a Langevin equation that accounts for the effects of non-commutativity and resembles the structure of Brownian motion in the presence of a magnetic field. As expected, fluctuations along non-commutative directions are generically correlated. Our results show that the viscosity of the plasma is smaller than the commutative case and that the diffusion properties of the quark are unaffected by non-commutativity. Finally, we compute the random force autocorrelator and verify that the fluctuation-dissipation theorem holds in the presence of non-commutativity.
View original:
http://arxiv.org/abs/1209.1044
No comments:
Post a Comment