Yaohua Wang, Naqing Xie, Xiao Zhang
We provide a definition of the total energy-momentum for asymptotically anti-de Sitter initial data sets which are asymptotic to t-slice in anti-de Sitter spacetime. The definition arises from the boundary terms in Witten's argument of the positive energy theorem. It reduces to Chru\'{s}ciel-Maerten-Tod's definition when t=0. We prove the positive energy theorem for asymptotically anti-de Sitter spacetimes. We also verify that the total energy-momentum actually equals to Henneaux-Teitelboim's energy-momentum.
View original:
http://arxiv.org/abs/1207.2914
No comments:
Post a Comment