Tuesday, June 19, 2012

1206.3772 (Marc Casals et al.)

Regularization of static self-forces    [PDF]

Marc Casals, Eric Poisson, Ian Vega
Various regularization methods have been used to compute the self-force acting on a static particle in a static, curved spacetime. Many of these are based on Hadamard's two-point function in three dimensions. On the other hand, the regularization method that enjoys the best justification is that of Detweiler and Whiting, which is based on a four-dimensional Green's function. We establish the connection between these methods and find that they are all equivalent, in the sense that they all lead to the same static self-force. For general static spacetimes, we compute local expansions of the Green's functions on which the various regularization methods are based. We find that these agree up to a certain high order, and conjecture that they might be equal to all orders. We show that this equivalence is exact in the case of ultrastatic spacetimes. Finally, our computations are exploited to provide regularization parameters for a static particle in a general static and spherically-symmetric spacetime.
View original: http://arxiv.org/abs/1206.3772

No comments:

Post a Comment