Reinhard Prix, Miroslav Shaltev
Coherent wide parameter-space searches for continuous gravitational waves are typically limited in sensitivity by their prohibitive computing cost. Therefore semi-coherent methods (such as StackSlide) can often achieve a better sensitivity. We develop an analytical method for finding optimal StackSlide parameters at fixed computing cost under ideal conditions of gapless data with Gaussian stationary noise. This solution separates two regimes: an unbounded regime, where it is always optimal to use all the data, and a bounded regime with a finite optimal observation time. Our analysis of the sensitivity scaling reveals that both the fine- and coarse-grid mismatches contribute equally to the average StackSlide mismatch, an effect that had been overlooked in previous studies. We discuss various practical examples for the application of this optimization framework, illustrating the potential gains in sensitivity compared to previous searches.
View original:
http://arxiv.org/abs/1201.4321
No comments:
Post a Comment