Wednesday, March 21, 2012

1101.0996 (P. G. Komorowski et al.)

The Carter Constant for Inclined Orbits About a Massive Kerr Black Hole:
near-circular, near-polar orbits
   [PDF]

P. G. Komorowski, S. R. Valluri, M. Houde
In an extreme mass-ratio binary black hole system, a non-equatorial orbit will list (i.e. increase its angle of inclination, {\iota}) as it evolves in Kerr spacetime. The abutment, a set of evolving, near-polar, retrograde orbits, for which the instantaneous Carter constant (Q) is at its maximum value (Q_{X}) for given values of latus rectum (l) and eccentricity (e), has been introduced as a laboratory in which the consistency of dQ/dt with corresponding evolution equations for dl/dt and de/dt might be tested independently of a specific radiation back-reaction model. To demonstrate the use of the abutment as such a laboratory, a derivation of dQ/dt, based only on published formulae for dl/dt and de/dt, was performed for elliptical orbits on the abutment. The resulting expression for dQ/dt matched the published result to the second order in e. We believe the abutment is a potentially useful tool for improving the accuracy of evolution equations to higher orders of e and l^{1}.
View original: http://arxiv.org/abs/1101.0996

No comments:

Post a Comment