1202.4750 (Andreas Ross)
Andreas Ross
Sources of long wavelength radiation are naturally described by an effective
field theory (EFT) which takes the form of a multipole expansion. Its action is
given by a derivative expansion where higher order terms are suppressed by
powers of the ratio of the size of the source over the wavelength. In order to
determine the Wilson coefficients of the EFT, i.e. the multipole moments, one
needs the mapping between a linear source term action and the multipole
expansion form of the action of the EFT. In this paper we perform the multipole
expansion to all orders by Taylor expanding the field in the source term and
then decomposing the action into symmetric trace free tensors which form
irreducible representations of the rotation group. We work at the level of the
action, and we obtain the action to all orders in the multipole expansion and
the exact expressions for the multipole moments for a scalar field,
electromagnetism and linearized gravity. Our results for the latter two cases
are manifestly gauge invariant. We also give expressions for the energy flux
and the (gauge dependent) radiation field to all orders in the multipole
expansion. The results for linearized gravity are a component of the EFT
framework NRGR and will greatly simplify future calculations of gravitational
wave observables in the radiation sector of NRGR.
View original:
http://arxiv.org/abs/1202.4750
No comments:
Post a Comment